
Course Module: Software Engineering - Object-Oriented Design: Relationships, 
Interactions, and Process 

Module Overview: This module delves into crucial aspects of Object-Oriented Design 
(OOD), moving beyond basic class structures to explore the nuanced relationships 
between objects and their dynamic interactions. We begin by dissecting different 
types of associations, with a particular focus on the profound implications of 
aggregation and composition, alongside understanding dependency. Subsequently, 
we transition to dynamic modeling, mastering the creation and interpretation of 
Interaction Diagrams, especially Sequence Diagrams, which illustrate the flow of 
messages between objects over time. We will then explore State-Machine Diagrams, a 
powerful tool for modeling the lifecycle and behavior of individual objects in response 
to events. The module culminates in a holistic overview of a typical Object-Oriented 
Design process, integrating all previously learned concepts and diagrams into a 
coherent methodology for constructing robust and flexible software architectures. 

 

Lecture 36: Aggregation/Composition and Dependency Relations 

● Learning Objectives: 
○ Differentiate comprehensively between various types of associations in 

Object-Oriented Design, including simple association, aggregation, and 
composition. 

○ Grasp the semantic meaning and implications of "whole-part" 
relationships, particularly as modeled by aggregation and composition. 

○ Master the UML notation for representing association, aggregation, 
composition, and dependency in Class Diagrams. 

○ Understand the concept of "Dependency" as a weaker, transient 
relationship between elements. 

○ Apply these relationship types appropriately in object-oriented 
modeling scenarios to reflect real-world connections between classes. 

● Topics Covered: 
○ 1. Revisiting Association: The Fundamental Connection: 

■ 1.1. Definition: An Association is the most general and common 
type of relationship between two or more classes in a Class 
Diagram. It signifies a structural connection between instances 
of the classes, indicating that objects of one class are connected 
to (and often know about) objects of another class. It implies that 
objects of one class can interact with or send messages to 
objects of the other class. 

■ 1.2. Purpose: Associations describe static connections. For 
example, a Student "enrolls in" Course, or a Customer "places" 
Order. The nature of this connection can be further specified by 
roles, multiplicity, and navigability. 

■ 1.3. UML Notation: Represented by a solid line connecting the 
associated classes. Can have a name (e.g., "enrolls in"), reading 



direction arrow, roles (e.g., "enrolled student" at Student end), 
and multiplicity (e.g., 1..* for one or more courses). 

■ 1.4. Multiplicity: Indicates how many instances of one class can 
be associated with one instance of the other class (e.g., 1 for 
exactly one, 0..1 for zero or one, * or 0..* for zero or many, 
1..* for one or many). 

■ 1.5. Navigability: Indicated by an arrow on one end of the 
association line. An arrow from Class A to Class B means that 
Class A objects can access or navigate to Class B objects, but 
not necessarily vice versa. If no arrow, it implies bi-directional 
navigability. 

○ 2. Aggregation: The "Has-A" Relationship (Shared Whole-Part): 
■ 2.1. Definition: Aggregation is a special form of association that 

represents a "whole-part" relationship. It implies that one class 
(the "whole" or aggregate) is composed of, or "has," instances of 
another class (the "part" or component). 

■ 2.2. Key Characteristic: Independent Lifecycles: The crucial 
aspect of aggregation is that the parts can exist independently of 
the whole. If the whole is deleted, the parts are not necessarily 
deleted; they can continue to exist and potentially be associated 
with other wholes. This signifies a shared or loose "has-a" 
relationship. 

■ 2.3. Example Scenario: A Department "has" Professors. If the 
Department ceases to exist, the Professors still exist and can 
be assigned to other departments or jobs. Similarly, a Car "has" 
Wheels. The Wheels can be removed and used on another car, or 
stored, without destroying the Wheels themselves when the Car 
is scrapped. 

■ 2.4. UML Notation: Represented by a solid line with an unfilled 
(white) diamond shape on the "whole" or aggregate end of the 
association. 

■ Department <>----- Professor (Diamond on 
Department end) 

■ Car <>----- Wheel (Diamond on Car end) 
○ 3. Composition: The "Contains-A" Relationship (Exclusive Whole-Part): 

■ 3.1. Definition: Composition is a stronger and more restrictive 
form of aggregation. It also represents a "whole-part" 
relationship, but with a critical difference: the parts are 
exclusively owned by the whole and cannot exist independently 
of it. 

■ 3.2. Key Characteristic: Dependent Lifecycles: The existence of 
the parts is entirely dependent on the existence of the whole. If 
the whole is deleted, all its composed parts are also deleted. This 
signifies a strong or exclusive "contains-a" relationship. It often 
implies that the part is created and destroyed with the whole. 



■ 3.3. Example Scenario: A House "contains" Rooms. If the House is 
demolished, the Rooms cease to exist as rooms of that house. A 
Paragraph "contains" Sentences. If the Paragraph is deleted, 
its Sentences are also deleted (they don't float around 
independently waiting for another paragraph). An Order 
"contains" OrderLines. An OrderLine has no meaning without 
its Order. 

■ 3.4. UML Notation: Represented by a solid line with a filled (black) 
diamond shape on the "whole" or composite end of the 
association. 

■ House --* Room (Filled diamond on House end, often 
with multiplicity 1..* on Room end) 

■ Order --* OrderLine (Filled diamond on Order end) 
■ Paragraph --* Sentence (Filled diamond on 

Paragraph end) 
○ 4. Dependency: The "Uses-A" or "Knows-About" Relationship (Weakest 

Link): 
■ 4.1. Definition: Dependency is the weakest form of relationship 

between two elements. It indicates that a change in one element 
(the independent element) may affect the other element (the 
dependent element). It signifies a "uses-a" or "knows-about" 
relationship, where one class relies on another class for its 
functionality, but doesn't necessarily hold a direct, persistent 
reference to its instances. 

■ 4.2. Key Characteristics: 
■ Transient Relationship: Dependencies are often temporary 

or transient. An object might use another object only for a 
specific operation (e.g., as a local variable, a parameter to 
a method, or by invoking a static method). 

■ No Structural Connection: Unlike association, 
aggregation, or composition, dependency does not imply 
a direct, persistent structural connection or a part-whole 
relationship. 

■ Directional: The dependency always goes from the 
dependent element to the independent element. 

■ 4.3. Example Scenario: A Customer class might depend on a 
DateFormatter class to format a date for display. If the 
DateFormatter class changes its method signature, the 
Customer class might need to be recompiled. A Method (in a 
class) might depend on a Utility class. A ReportGenerator 
might depend on a DatabaseConnector to retrieve data. 

■ 4.4. UML Notation: Represented by a dashed line with an open 
arrow pointing from the dependent element to the independent 
element. 



■ Customer -------> DateFormatter (Dashed arrow 
from Customer to DateFormatter) 

■ ReportGenerator -------> DatabaseConnector 
(Dashed arrow from ReportGenerator to 
DatabaseConnector) 

○ 5. Summary of Relationship Types and Their Implications: 
■ Association: General "uses" or "knows about." Instances are 

connected. (Solid line) 
■ Aggregation: "Has a" (shared ownership). Parts can exist 

independently of the whole. (Unfilled diamond on whole end) 
■ Composition: "Contains a" (exclusive ownership). Parts' lifecycle 

depends on the whole. (Filled diamond on whole end) 
■ Dependency: "Uses a" (transient reliance). Change in 

independent may affect dependent. (Dashed arrow from 
dependent to independent) 

■ Why Differentiate? Choosing the correct relationship type is 
critical for creating accurate and robust object-oriented models. 
It directly impacts: 

■ System Semantics: Correctly reflects the real-world 
connections. 

■ Code Implementation: Guides how classes are coded (e.g., 
nested classes, object creation/deletion logic, parameter 
passing vs. member variables). 

■ Maintainability and Understandability: Clearer 
relationships lead to more comprehensible and 
easier-to-maintain code. 

■ Garbage Collection/Memory Management: Especially for 
composition, the lifecycle dependency influences memory 
management. 

 

Lecture 37: Interaction Modeling 

● Learning Objectives: 
○ Understand the necessity and purpose of Interaction Diagrams within 

the context of Object-Oriented Design. 
○ Distinguish Interaction Diagrams from static structure diagrams (like 

Class Diagrams) and comprehend their complementary roles. 
○ Identify the core elements common to all UML Interaction Diagrams 

(objects, messages). 
○ Appreciate the different types of Interaction Diagrams (Sequence and 

Communication Diagrams) and their primary focus. 
○ Grasp how Interaction Diagrams capture the dynamic behavior of a 

system or a specific scenario. 
● Topics Covered: 

○ 1. The Need for Dynamic Modeling in OOD: 



■ 1.1. Limitations of Static Models: Class Diagrams (and other 
static structure diagrams) are excellent for representing the 
"skeleton" or "architecture" of a system: the classes, their 
attributes, methods, and relationships. However, they tell us what 
the system is composed of, but not how it actually works, how 
objects collaborate to perform a specific task, or in what 
sequence messages are exchanged. 

■ 1.2. Purpose of Dynamic Modeling: To complement static models, 
Object-Oriented Design utilizes dynamic models. These diagrams 
capture the "behavior" of a system by illustrating the interactions 
between objects, their state changes, and the flow of control over 
time. They describe the system's runtime behavior. 

■ 1.3. Bridging Analysis and Design: Dynamic models help 
translate the functional requirements (e.g., use cases) into 
concrete design decisions about how objects will communicate 
to fulfill those requirements. They answer questions like: "Which 
objects participate in a specific use case flow?", "What 
messages do they send to each other?", and "In what order do 
these messages occur?". 

○ 2. Introduction to UML Interaction Diagrams: 
■ 2.1. Definition: Interaction Diagrams in UML are a family of 

diagrams that model the dynamic aspects of a system. They 
show how groups of objects collaborate to achieve some 
behavior. This behavior is typically a single use case or a specific 
scenario within a use case. 

■ 2.2. Key Elements Common to Interaction Diagrams: 
■ Objects: Represent instances of classes at runtime. They 

are typically named objectName:ClassName or just 
:ClassName if the specific instance name is not 
important. 

■ Messages: Represent communication between objects. A 
message corresponds to a method call, a signal, or an 
action that an object performs on another. Messages have 
names and can carry parameters. 

■ Lifelines: (Primarily in Sequence Diagrams, but 
conceptually relevant) Represent the existence of an 
object over a period of time during an interaction. 

■ Execution Specifications (Activation Bars): (Primarily in 
Sequence Diagrams) Indicate the period during which an 
object is performing an action (i.e., its method is 
executing). 

■ 2.3. Focus of Interaction Diagrams: To illustrate the sequential or 
concurrent flow of control and data between objects to achieve a 
particular goal. They are often derived from a use case scenario 
or an operation of a class. 

○ 3. Types of UML Interaction Diagrams (Overview): 



■ UML defines several types of interaction diagrams, each 
emphasizing a different aspect of collaboration: 

■ 3.1. Sequence Diagrams: 
■ Primary Focus: The time ordering of messages. They 

explicitly show the sequence of messages exchanged 
between objects along a timeline. 

■ Best For: Understanding the flow of control for a single 
scenario, particularly when the exact order of events is 
crucial. They are excellent for illustrating complex 
algorithms or use case flows. (Detailed in Lecture 38). 

■ 3.2. Communication Diagrams (formerly Collaboration Diagrams): 
■ Primary Focus: The structural organization of objects and 

the messages exchanged between them, highlighting the 
links between objects. They show the objects and their 
associations, with messages numbered to indicate their 
sequence. 

■ Best For: Understanding object relationships and how 
objects are linked to enable communication. They are less 
focused on timing and more on how objects are "wired" 
together. They can be seen as an alternative view to 
Sequence Diagrams for the same interaction. 

■ 3.3. Interaction Overview Diagrams: A combination of activity 
diagrams and sequence diagrams, providing a high-level 
overview of complex interaction scenarios. 

■ 3.4. Timing Diagrams: A specialized interaction diagram that 
focuses on the exact timing of events and changes in state over 
a linear time axis, often used in real-time systems. 

○ 4. The Role of Interaction Modeling in the OOD Process: 
■ 4.1. From Use Cases to Design: Interaction diagrams (especially 

Sequence Diagrams) are directly derived from use case 
scenarios. Each scenario (a specific path through a use case) 
can be modeled as an interaction diagram, showing how the 
objects collaborate to fulfill that scenario. 

■ 4.2. Identifying Operations and Attributes: As you model 
interactions, you identify the responsibilities of each object: what 
methods (operations) it needs to have, and what data (attributes) 
it needs to maintain to support those operations. This directly 
refines your Class Diagram. 

■ 4.3. Refining Object Responsibilities: By visualizing message 
exchanges, you can assess if objects have appropriate 
responsibilities. If an object is sending too many messages to 
unrelated objects, its cohesion might be low, or its 
responsibilities might be ill-defined. 

■ 4.4. Validating Design Decisions: Interaction diagrams allow you 
to "play out" a scenario with your proposed object structure, 
helping to validate whether your design can actually achieve the 
required behavior. They uncover missing messages, operations, 
or even necessary objects. 



■ 4.5. Communication and Documentation: They serve as excellent 
documentation for developers, clearly showing how different 
parts of the system interact to perform a function. They facilitate 
communication among team members. 

 

Lecture 38: Development of Sequence Diagrams 

● Learning Objectives: 
○ Define and articulate the purpose of a Sequence Diagram in modeling 

object interactions over time. 
○ Master the essential components and their UML notation used in 

creating comprehensive Sequence Diagrams. 
○ Distinguish between various types of messages (synchronous, 

asynchronous, return, self-messages) and model them correctly. 
○ Apply combined fragments (e.g., alt, loop, opt, par) to represent 

complex control flows within interactions. 
○ Develop detailed Sequence Diagrams for given use case scenarios, 

effectively capturing the temporal order of message exchanges. 
● Topics Covered: 

○ 1. Introduction to Sequence Diagrams: Time-Ordered Object 
Collaboration: 

■ 1.1. Definition: A Sequence Diagram is a type of UML Interaction 
Diagram that shows how objects interact with each other and the 
order in which these interactions occur over a specific period of 
time. It emphasizes the temporal sequence of messages 
exchanged between objects. 

■ 1.2. Purpose: 
1. To model the logic of a use case, a use case scenario, or a 

complex operation. 
2. To illustrate how objects collaborate to achieve a desired 

behavior. 
3. To identify necessary messages, operations (methods), 

and parameters for classes. 
4. To visualize concurrent processes or complex 

conditional/looping logic within an interaction. 
5. To document system behavior for developers and 

stakeholders. 
○ 2. Essential Components and UML Notation of Sequence Diagrams: 

■ 2.1. Lifeline (Object/Actor): 
1. Notation: A rectangle representing an object (or an actor, 

often for the initial message sender) at the top, with a 
dashed vertical line extending downwards from its center. 

2. Meaning: The rectangle contains the object's name and 
class name (e.g., john:Customer or :OrderProcessor if 
the specific instance name isn't important). The dashed 



line, called the lifeline, represents the existence of the 
object during the interaction. 

3. Actors: Actors initiate the interaction, typically placed on 
the far left. 

■ 2.2. Activation Bar (Execution Specification): 
1. Notation: A thin, solid rectangle drawn vertically on a 

lifeline. 
2. Meaning: Represents the period during which an object is 

actively performing an operation (i.e., its method is 
executing). It indicates when an object is "in focus" or 
"active." When an object sends a message, its activation 
bar usually starts, and it continues until the called method 
returns or the object passes control. 

■ 2.3. Messages: Represent communication between objects. 
Drawn as horizontal arrows between lifelines. 

1. 2.3.1. Synchronous Message (Call): 
■ Notation: A solid line with a filled arrowhead (like a 

normal function call). The sender waits for the 
receiver to complete the operation and return. 

■ Meaning: The most common type. The sender 
blocks until the message is processed and a 
response (implicitly or explicitly via a return 
message) is received. 

■ Example: Customer -> OrderProcessor: 
placeOrder(orderDetails) 

2. 2.3.2. Asynchronous Message: 
■ Notation: A solid line with an open (stick) 

arrowhead. The sender does not wait for a 
response; it continues its own execution 
immediately. 

■ Meaning: Used for concurrent systems, 
event-driven systems, or when sending 
notifications where an immediate response isn't 
needed. 

■ Example: Server -> LoggingService: 
logEvent(eventDetails) 

3. 2.3.3. Return Message: 
■ Notation: A dashed line with an open (stick) 

arrowhead, usually pointing back to the sender of 
the original synchronous message. 

■ Meaning: Indicates the flow of control (and 
optionally, return values) back to the sender of a 
synchronous message. Often implied and omitted 
for clarity if no specific return value needs to be 
shown. 



■ Example: OrderProcessor --> Customer: 
orderConfirmation (or OrderProcessor --> 
Customer: [orderId]) 

4. 2.3.4. Self-Message: 
■ Notation: A message arrow that loops back to the 

same lifeline. 
■ Meaning: An object calling one of its own methods. 
■ Example: OrderProcessor -> OrderProcessor: 

validateOrderDetails() 
5. 2.3.5. Lost Message: 

■ Notation: An arrow originating from a lifeline and 
terminating on a small black circle (bullet). 

■ Meaning: A message that is sent but never reaches 
its intended recipient. This typically indicates a 
design flaw or an unhandled exception. 

6. 2.3.6. Found Message: 
■ Notation: An arrow originating from a small black 

circle (bullet) and terminating on a lifeline. 
■ Meaning: A message that is received by an object, 

but its sender is unknown or outside the scope of 
the diagram. This might represent an external event 
or an unmodeled source. 

■ 2.4. Object Creation and Destruction: 
1. Creation: An arrow labeled <<create>> (or a constructor 

call) pointing to the newly created object's lifeline, which 
typically starts at the point of creation. 

2. Destruction: An X at the end of a lifeline, indicating the 
object ceases to exist (relevant in languages with manual 
memory management). 

○ 3. Combined Fragments: Modeling Complex Control Flow: 
■ Combined fragments allow for expressing more complex 

interactions than simple sequential message flows. They are 
denoted by a rectangular frame around a section of lifelines and 
messages. 

■ 3.1. alt (Alternative): 
1. Notation: A frame divided into multiple regions by dashed 

lines. Each region has a "guard condition" in square 
brackets [condition]. 

2. Meaning: Represents an "if-then-else" construct. Only one 
of the regions (alternatives) will execute based on the 
truth of its guard condition. 

3. Example: [credit card valid] vs. [credit card 
invalid]. 

■ 3.2. loop (Loop): 



1. Notation: A frame with loop keyword and a guard 
condition or iteration range (e.g., [for each item] or 
[1..*]). 

2. Meaning: The messages within the loop fragment are 
repeated multiple times. 

3. Example: Looping through LineItem objects to 
calculateSubtotal(). 

■ 3.3. opt (Option): 
1. Notation: A frame with opt keyword and a single guard 

condition. 
2. Meaning: Represents an "if-then" construct. The 

messages within the fragment will execute only if the 
guard condition is true; otherwise, they are skipped. 

3. Example: [if user opts for email receipt] send 
email. 

■ 3.4. par (Parallel): 
1. Notation: A frame with par keyword, divided into regions 

by horizontal dashed lines. 
2. Meaning: The messages within each region of the par 

fragment are executed concurrently (in parallel). 
3. Example: Simultaneously sending an email notification 

and updating a database log. 
■ 3.5. ref (Reference): 

1. Notation: A frame with ref keyword and the name of 
another Sequence Diagram. 

2. Meaning: Allows a complex sequence diagram to be 
broken down into smaller, more manageable 
sub-diagrams, promoting modularity. 

○ 4. Development of Sequence Diagrams: A Step-by-Step Process: 
■ Step 1: Identify the Scenario/Use Case: Choose a specific use 

case scenario that you want to model. This should be a single 
path through a use case (e.g., "Successful Customer Login," 
"Failed Course Registration due to Prerequisites"). 

■ Step 2: Identify Participating Objects and Actors: List all the 
objects (instances of classes) and actors that will interact in this 
scenario. These will become your lifelines. 

■ Step 3: Arrange Lifelines: Place the lifelines horizontally across 
the top of the diagram. Conventionally, the initiating actor/object 
is on the far left. Objects that respond or are called later are 
placed to the right. 

■ Step 4: Draw the Initial Message: The scenario usually starts with 
an actor sending a message to the first object in the system. 
Draw this message. 

■ Step 5: Trace the Message Flow: Follow the scenario 
step-by-step. For each action, determine which object sends a 



message to which other object, and what the message is. Draw 
the synchronous/asynchronous messages. 

■ Step 6: Show Activations and Returns: As messages are sent, 
draw activation bars on the lifelines to indicate when objects are 
active. Draw return messages if specific return values are 
important. 

■ Step 7: Add Control Logic (Combined Fragments): If the scenario 
involves conditionals, loops, or optional steps, enclose the 
relevant message sequences within alt, loop, opt, or par 
fragments. Add guard conditions. 

■ Step 8: Consider Object Creation/Destruction: If objects are 
created or destroyed during the interaction, model these 
explicitly. 

■ Step 9: Review and Refine: Check for clarity, completeness, and 
consistency. Are all messages accounted for? Are object 
responsibilities clear? Does the diagram accurately reflect the 
scenario? 

○ 5. Practical Example: Online Course Registration - Registering for a 
Course: 

■ Scenario: A student successfully registers for an available 
course after meeting prerequisites. 

■ Lifelines: student:StudentActor, 
regController:RegistrationController, 
courseCatalog:CourseCatalog, studentDAO:StudentDAO, 
courseDAO:CourseDAO, billingService:BillingService. 

■ Messages (simplified flow): 
1. student -> regController: 

registerForCourse(studentId, courseId) 
2. regController -> courseCatalog: 

getCourseDetails(courseId) 
3. courseCatalog --> regController: 

[courseDetails] 
4. regController -> studentDAO: 

getStudentDetails(studentId) 
5. studentDAO --> regController: [studentDetails] 
6. regController -> courseCatalog: 

checkAvailability(courseId) 
7. courseCatalog --> regController: [isAvailable] 
8. alt fragment: 

■ [isAvailable = true AND prerequisitesMet 
= true] 

■ regController -> studentDAO: 
addCourseToSchedule(studentId, 
courseId) 



■ studentDAO --> regController: 
[success] 

■ regController -> courseDAO: 
updateCourseEnrollment(courseId) 

■ courseDAO --> regController: 
[success] 

■ regController -> billingService: 
generateBill(studentId, courseId) 

■ billingService --> regController: 
[billDetails] 

■ regController --> student: 
[registrationConfirmation] 

■ [isAvailable = false OR prerequisitesMet 
= false] 

■ regController --> student: 
[registrationFailedError] 

 

Lecture 39: State-Machine Diagram 

● Learning Objectives: 
○ Define State-Machine Diagrams and articulate their primary purpose in 

modeling the dynamic behavior of a single object or system. 
○ Master the key components and their UML notation for constructing 

comprehensive State-Machine Diagrams. 
○ Understand the concepts of states, transitions, events, guard 

conditions, and actions within the context of an object's lifecycle. 
○ Differentiate between various types of states including initial, final, and 

composite states. 
○ Develop State-Machine Diagrams for objects with complex, event-driven 

behavior, effectively capturing their lifecycle. 
● Topics Covered: 

○ 1. Introduction to State-Machine Diagrams: Modeling Object Lifecycle 
and Behavior: 

■ 1.1. Definition: A State-Machine Diagram (often simply called a 
State Diagram or Statechart Diagram) in UML models the 
dynamic behavior of a single object (or an entire system) by 
showing its sequence of states that it goes through in its lifetime 
in response to external or internal events. It's particularly useful 
for objects whose behavior is highly dependent on their current 
state. 

■ 1.2. Purpose: 
■ To model the lifecycle of an object: how it is created, 

changes states, and is eventually destroyed. 



■ To capture the behavior of reactive objects: objects that 
respond differently to the same event depending on their 
current state. 

■ To specify the valid sequences of events for an object. 
■ To help identify missing or invalid events and actions. 
■ To understand complex business rules related to an 

object's status. 
■ Used extensively in embedded systems, real-time 

systems, and user interface design. 
○ 2. Key Components and UML Notation of State-Machine Diagrams: 

■ 2.1. State: 
■ Notation: A rectangle with rounded corners, containing 

the name of the state. 
■ Meaning: A condition or situation during the life of an 

object during which it satisfies some condition, performs 
some activity, or waits for some event. An object can be in 
only one state at a time. 

■ State Name: A clear, concise name (e.g., "Idle," 
"Processing," "Approved," "Pending"). 

■ Internal Activities/Actions (Optional): Can be listed within 
the state box: 

■ entry / action: An action performed upon 
entering the state. 

■ exit / action: An action performed upon exiting 
the state. 

■ do / activity: An activity that continues while 
the object is in this state. 

■ 2.2. Initial State (Start State): 
■ Notation: A filled solid circle. 
■ Meaning: Represents the starting point of the state 

machine. Every state machine diagram must have exactly 
one initial state. 

■ 2.3. Final State (End State): 
■ Notation: A filled solid circle surrounded by a larger circle. 
■ Meaning: Represents the completion of the state 

machine's activity or the termination of the object's 
lifecycle. A state machine can have multiple final states or 
none (if it models a continuous process). 

■ 2.4. Transition: 
■ Notation: A solid arrow connecting two states. 
■ Meaning: Represents a change from one state to another. 

A transition is triggered by an event. 
■ Labeling: Labeled in the format: Event [Guard 

Condition] / Action 
■ Event: The trigger that causes the transition (e.g., 

buttonClicked, timeout, paymentReceived). 



■ [Guard Condition]: An optional Boolean 
expression that must be true for the transition to 
occur (e.g., [amount > 0], [isAdmin]). If the 
event occurs but the guard condition is false, the 
transition does not fire. 

■ / Action: An optional action performed during the 
transition (before entering the new state). This is an 
atomic, non-interruptible action. 

■ 2.5. Self-Transition: 
■ Notation: A transition arrow that loops back to the same 

state. 
■ Meaning: An event occurs, potentially triggering an action, 

but the object remains in the same state. 
■ 2.6. Composite State (Nested States): 

■ Notation: A state box that contains other, nested state 
diagrams. 

■ Meaning: Used to simplify complex state machines by 
grouping related states and transitions into a higher-level 
state. This allows for hierarchical state modeling. When 
the object enters the composite state, it implicitly enters 
the initial state of the nested diagram. When it exits the 
composite state, it exits all nested states. 

■ 2.7. History Pseudostate (H):* 
■ Notation: A circle containing H (shallow history) or H* 

(deep history). 
■ Meaning: A transition to a history pseudostate means that 

upon re-entering a composite state, the object should 
return to the last active sub-state it was in before it exited 
the composite state, rather than always going to the initial 
sub-state. 

○ 3. Development of State-Machine Diagrams: A Step-by-Step Process: 
■ Step 1: Identify the Object/System: Choose the specific object or 

system whose lifecycle and event-driven behavior you want to 
model. This object should exhibit distinct states and respond 
differently to events based on its state. 

■ Step 2: Identify Initial and Final States: Determine the starting 
point of the object's lifecycle and any potential end points. 

■ Step 3: Identify All Possible States: Brainstorm all distinct, stable 
conditions that the object can be in during its lifetime. Name 
them clearly. 

■ Step 4: Identify Events that Cause State Changes: For each state, 
consider what external (or internal) events can occur. 

■ Step 5: Define Transitions: For each event, determine if it causes 
a transition from the current state to another state. Draw an arrow 
and label it with Event [Guard] / Action. 



■ Step 6: Define Internal Activities/Actions (Entry/Exit/Do): For each 
state, specify any activities performed upon entering, exiting, or 
while remaining in that state. 

■ Step 7: Consider Composite States (if complex): If a set of states 
and transitions forms a self-contained, logical unit, encapsulate 
them within a composite state to simplify the diagram. 

■ Step 8: Review and Validate: 
■ Reachability: Can all states be reached from the initial 

state? 
■ Dead Ends: Are there any states from which no transition 

is possible (unless it's a final state)? 
■ Completeness: Have all relevant events and their effects 

on the object's state been considered? 
■ Consistency: Does the model accurately reflect the 

object's behavior according to requirements? 
○ 4. Practical Example: Lifecycle of an Order Object in an E-commerce 

System: 
■ Object: Order 
■ States: 

■ Initial State (implicit start) 
■ New (Order just placed) 
■ Pending_Payment (Awaiting payment authorization) 
■ Payment_Authorized (Payment confirmed) 
■ Processing (Warehouse picking and packing) 
■ Shipped (Order has left warehouse) 
■ Delivered (Customer received order) 
■ Cancelled (Order cancelled, can happen from New, 

Pending_Payment, Processing) 
■ Returned (Order returned by customer, can happen from 

Delivered) 
■ Refunded (Refund processed, can happen from Returned 

or Cancelled) 
■ Final State (implicit end for Delivered, Cancelled, 

Refunded) 
■ Transitions (Examples): 

■ Initial State -> New (createOrder / 
generateOrderId) 

■ New -> Pending_Payment (submitPaymentInfo) 
■ Pending_Payment -> Payment_Authorized 

(paymentApproved) 
■ Pending_Payment -> Cancelled (cancelOrder) 
■ Payment_Authorized -> Processing 

(sendToWarehouse) 
■ Processing -> Shipped (shipmentConfirmed) 



■ Processing -> Cancelled (cancelOrder) 
■ Shipped -> Delivered (deliveryConfirmed) 
■ Delivered -> Returned (customerInitiatesReturn) 
■ Returned -> Refunded (processRefund) 
■ Cancelled -> Refunded (processRefund 

[hasPayment]) 
■ New -> Cancelled (cancelOrder) 

■ Actions/Activities (Examples): 
■ New state: do / validateOrderItems 
■ Pending_Payment state: entry / 

notifyCustomerOfPendingPayment 
■ Processing state: do / monitorInventoryStock 
■ Cancelled state: entry / releaseInventory 
■ paymentApproved / recordTransaction (Action on 

transition from Pending_Payment to 
Payment_Authorized) 

 

Lecture 40: An Object-Oriented Design Process 

● Learning Objectives: 
○ Understand the iterative and incremental nature of a typical 

Object-Oriented Design (OOD) process. 
○ Identify the key activities and phases involved in moving from 

requirements to an object-oriented architecture. 
○ Comprehend the role and interrelationships of various UML diagrams 

(Class, Interaction, State-Machine) as tools throughout the OOD 
process. 

○ Grasp how OOD principles (e.g., encapsulation, inheritance, 
polymorphism, cohesion, coupling) are applied at different stages of the 
design. 

○ Formulate a structured approach to designing an object-oriented 
system based on best practices. 

● Topics Covered: 
○ 1. Introduction to Object-Oriented Design (OOD) Process: 

■ 1.1. What is OOD? OOD is the process of planning a system of 
interacting objects to solve a software problem. It's about 
defining the classes, their attributes, their behaviors (methods), 
and how they interact to fulfill the system's requirements. 

■ 1.2. Key Characteristics of an OOD Process: 
■ Iterative: Design is rarely a single, linear pass. It involves 

cycles of analysis, design, implementation, and 
evaluation, with continuous refinement. 

■ Incremental: The system is built and designed in small, 
manageable chunks, adding functionality incrementally. 



■ Driven by Requirements: The entire process is firmly 
rooted in the system's functional and non-functional 
requirements, typically captured in Use Cases. 

■ Principle-Based: Guided by core object-oriented principles 
(encapsulation, inheritance, polymorphism, abstraction) 
and design heuristics (cohesion, coupling). 

■ UML-Aided: Unified Modeling Language (UML) diagrams 
are the primary tools for visualizing and documenting the 
design artifacts. 

○ 2. Phases and Activities in a Generic OOD Process (Often Iterative and 
Overlapping): 

■ While specific methodologies (e.g., RUP, Scrum) vary, a typical 
OOD process encompasses several logical activities: 

■ 2.1. Requirements Analysis & Use Case Modeling (What to do?): 
■ Purpose: To thoroughly understand and define the 

functional and non-functional requirements of the system 
from the user's perspective. 

■ Activities: Eliciting requirements, creating Use Case 
Diagrams (describing system functionality from actor's 
viewpoint), writing detailed Use Case Scenarios 
(step-by-step descriptions of interactions for each use 
case). 

■ Output: Use case model, supplementary specifications. 
This phase feeds directly into design. 

■ 2.2. Domain Modeling / Conceptual Class Identification (Identify 
Core Business Objects): 

■ Purpose: To create a conceptual model of the problem 
domain, identifying the key real-world concepts (domain 
objects) that the system will manage. This is often done 
during analysis but forms the foundation for design. 

■ Activities: Identifying candidate classes/entities from 
nouns in requirements, defining their attributes, and 
establishing their relationships (associations, 
aggregations, compositions – as discussed in Lecture 36). 

■ UML Tool: Domain Model Class Diagram (a simplified 
Class Diagram focused on concepts, not software 
classes). 

■ Output: Initial conceptual class definitions. 
■ 2.3. System Sequence Diagram (SSD) Development (Initial 

System-Level Interactions): 
■ Purpose: To model the sequence of events between the 

external actors and the system (treated as a black box). 
This helps to clarify system boundaries and overall 
system behavior. 

■ Activities: For each use case scenario, drawing an SSD 
showing the actor, the system, and the system events. 

■ UML Tool: System Sequence Diagram (a simplified 
Sequence Diagram). 



■ Output: System-level interaction flows for use cases. 
■ 2.4. Design Class Diagram Development (Static Structure 

Design): 
■ Purpose: To transform the conceptual classes into 

software classes, defining their responsibilities, methods, 
and visibility, and refining their relationships. 

■ Activities: 
■ Assigning Responsibilities: Determining which 

class is responsible for what data and behavior. 
Apply principles like Information Expert (assign 
responsibility to the class that has the information 
needed to fulfill it). 

■ Defining Attributes: Translating conceptual 
attributes into implementable data members with 
types. 

■ Defining Methods (Operations): Based on the 
responsibilities and interaction needs identified in 
SSDs. 

■ Refining Relationships: Specifying navigability, 
multiplicity, and correctly modeling aggregation, 
composition, and dependencies. 

■ Applying Principles: Encapsulation (data hiding), 
Inheritance (generalization/specialization), 
Polymorphism (common interface for different 
implementations). 

■ Design Heuristics: Aiming for high cohesion and 
low coupling in the class structure. 

■ UML Tool: Design Class Diagram (detailed Class Diagram 
with methods, visibility, and refined relationships). 

■ Output: The static architecture of the system. 
■ 2.5. Interaction Diagram Development (Dynamic Behavior 

Design): 
■ Purpose: To model how objects collaborate at runtime to 

fulfill specific use case scenarios, refining the method 
calls and interactions identified in the Class Diagram. 

■ Activities: 
■ For each complex or critical use case scenario 

(derived from the SSDs), drawing Sequence 
Diagrams or Communication Diagrams. 

■ Identifying the exact sequence of messages passed 
between specific object instances. 

■ Determining parameters for method calls and 
return values. 

■ Modeling conditional logic (alt), loops (loop), and 
optional behavior (opt). 



■ UML Tool: Sequence Diagrams (detailed object interaction 
over time), Communication Diagrams (object interaction 
highlighting links). 

■ Output: Detailed dynamic behavior models, often leading 
to refinements in the Design Class Diagram (e.g., new 
methods identified). 

■ 2.6. State-Machine Diagram Development (Object Lifecycle 
Design): 

■ Purpose: To model the lifecycle and event-driven behavior 
of individual objects that exhibit complex state-dependent 
behavior. 

■ Activities: Identifying objects with significant state 
changes (e.g., Order, Door, TrafficLight). Defining 
their states, events, transitions, guard conditions, and 
actions (as covered in Lecture 39). 

■ UML Tool: State-Machine Diagrams. 
■ Output: Behavior models for stateful objects, enriching 

the understanding of their dynamic properties. 
■ 2.7. Design Refinement & Optimization: 

■ Purpose: To review and improve the overall design based 
on quality attributes (performance, security, usability, 
maintainability, reusability) and design principles. 

■ Activities: 
■ Applying Design Patterns: Incorporating proven 

solutions to recurring design problems. 
■ Refactoring: Restructuring the design to improve 

its quality (e.g., extracting an abstract class, 
splitting a large class). 

■ Considering Non-Functional Requirements: 
Ensuring the design addresses performance 
bottlenecks, security concerns, etc. 

■ Peer Reviews/Walkthroughs: Getting feedback from 
other designers or developers. 

■ Traceability: Ensuring all requirements are 
traceable to design elements. 

■ Output: Optimized and refined OOD models, ready for 
implementation. 

○ 3. Role and Interrelationships of UML Diagrams in OOD: 
■ Use Case Diagrams: Define the system's external behavior 

(functional requirements). Drive the entire OOD process. 
■ Domain Model Class Diagram: Identify initial conceptual classes 

and relationships from the problem domain. 
■ System Sequence Diagram (SSD): Model system-level 

interactions for use cases, bridging from requirements to 
detailed design. 

■ Design Class Diagram: The central static blueprint. Defines 
classes, attributes, methods, and structural relationships 



(association, aggregation, composition, dependency). It's 
constantly refined. 

■ Sequence Diagrams: The central dynamic blueprint. Show how 
objects collaborate over time to execute scenarios, helping to 
discover methods and refine object responsibilities. They directly 
influence the operations in Class Diagrams. 

■ State-Machine Diagrams: Model the complex lifecycle behavior of 
individual objects, providing detailed behavior specifications for 
specific classes. 

○ 4. Importance of Principles and Heuristics in OOD Process: 
■ The process is not just about drawing diagrams; it's about 

applying sound design principles throughout: 
■ Encapsulation (Information Hiding): Hiding internal details of 

objects and exposing only necessary interfaces. 
■ Inheritance: Modeling generalization/specialization hierarchies. 
■ Polymorphism: Allowing objects of different classes to be treated 

through a common interface. 
■ Abstraction: Focusing on essential properties while hiding 

implementation details. 
■ High Cohesion: Ensuring each class/module has a single, 

well-defined responsibility. 
■ Low Coupling: Minimizing dependencies between 

classes/modules. 
■ DRY (Don't Repeat Yourself): Avoiding redundant code or design. 
■ SOLID Principles: (Single Responsibility, Open/Closed, Liskov 

Substitution, Interface Segregation, Dependency Inversion) - 
more advanced principles for maintaining flexible and robust 
designs, often applied during refinement. 

○ 5. Conclusion: A Structured Approach to Creative Design: 
■ An Object-Oriented Design process provides a structured, 

systematic, yet iterative approach to software development. It 
enables designers to manage complexity, ensure consistency, 
and produce high-quality, maintainable, and extensible software 
systems. 

■ While tools like UML diagrams provide the notation, the essence 
of OOD lies in the thought process: identifying robust objects, 
assigning responsibilities effectively, and defining clear, loosely 
coupled interactions. This disciplined approach is crucial for 
building complex systems that endure. 

 


